The antiproliferative and cell cycle effects of 5,6,7, 8-tetrahydro-N5,N10-carbonylfolic acid, an inhibitor of methylenetetrahydrofolate dehydrogenase, are potentiated by hypoxanthine.
نویسندگان
چکیده
5,6,7,8-Tetrahydro-N5,N10-carbonylfolic acid (LY354899) has been demonstrated to inhibit the dehydrogenase activity of C1-tetrahydrofolate synthase. This compound was only moderately antiproliferative toward CCRF-CEM lymphocytic leukemia cells in culture, but induced apoptosis after long incubation times. Slightly greater potency was observed in CEM cells adapted to grow in low folate media. Cell cycle alterations induced by LY354899 were unique relative to antifolates that inhibit either the purine or thymidine de novo biosynthetic pathways. Based on the observed changes in DNA content, we hypothesized that inhibition of the dehydrogenase resulted in two temporally distinct events: the first was a purineless-like effect and the second was a thymineless-like effect that resulted in apoptosis. To test this hypothesis, we combined LY354899 with the purine salvage metabolite, hypoxanthine. This combination resulted in an earlier and more dramatic apoptotic response, indicating that the thymineless effect had been potentiated. Biochemical analysis of ribo- and deoxyribonucleoside triphosphates confirmed that inhibition of the dehydrogenase activity initially resulted in decreased pools of deoxypurines and deoxypyrimidines, followed 16 hr later by an increase in deoxyadenosine triphosphate (dATP) and a further decrease in deoxythymidine triphosphate (dTTP). These studies demonstrate that the inhibition of the dehydrogenase activity of C1-tetrahydrofolate synthase may represent a viable target for the development of novel antifolates. The results are discussed in terms of deoxypurine and deoxypyrimidine biosynthesis.
منابع مشابه
Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells
Objective(s): T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA) as a recently emerged anti-neoplastic histone deacetylase (HDAC) inhibitor and pioglitazone (PGZ) as a high-affinity peroxisome p...
متن کاملCabazitaxel antiproliferative mechanism of action in U87MG human glioblastoma cells: a promising cell-cycle phase-specific radiosensitizer
Introduction: One mechanism of cell cycle manipulation and mitotic catastrophe is arrest at G2/M phase of cell cycle. Cabazitaxel, a mitotic inhibitor agent, is a second-generation semisynthetic taxane. An expected anti-neoplastic effect of Cabazitaxel is cell cycle perturbation and alteration of microtubule dynamics. In contrast to other taxane compounds, Cabazitaxel is a poo...
متن کاملPhytochemicals, antioxidant and antiproliferative properties of Rosmarinus officinalis L on U937 and CaCo-2 cells
Rosmarinus officinalis L., a medicinal herb from the labiates family, has been reported to be of potential benefit in the treatment and prevention of several diseases. In particular its phenolics have demonstrated protective effects on various types of cancer through several mechanisms. The present study aimed to determine the effects of rosemary phenolic extracts on human cell functions, with ...
متن کاملAnticancer and Apoptotic Effects of Ectoine and Hydroxyectoine on Non-Small Cell Lung Cancer cells: An in-vitro Investigation
Introduction: Streptomyces manage the osmotic stress by collecting compatible solutes or osmolytes. Ectoine, 1,4,5,6-tetrahydro-2-methyl-4-pyrimidine carboxylic acid, and 5-hydroxyectoine are among the most common osmolytes of this bacteria and have an active role in protecting the genetic material of this microorganism as well as providing resistance to environmental pressures. In this researc...
متن کاملAnticancer and Apoptotic Effects of Ectoine and Hydroxyectoine on Non-Small Cell Lung Cancer cells: An in-vitro Investigation
Introduction: Streptomyces manage the osmotic stress by collecting compatible solutes or osmolytes. Ectoine, 1,4,5,6-tetrahydro-2-methyl-4-pyrimidine carboxylic acid, and 5-hydroxyectoine are among the most common osmolytes of this bacteria and have an active role in protecting the genetic material of this microorganism as well as providing resistance to environmental pressures. In this researc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 287 1 شماره
صفحات -
تاریخ انتشار 1998